30 April 2015

The Density Parameter

In previous posts, I've discussed the density of the universe in terms of all the matter and energy the universe contains. I've also mentioned how the universe has a critical density, i.e. the matter and energy density required to make the universe flat (expanding forever while reaching a finite distance asymptotically.


Let's remember what we mean by open, closed, and flat universes.
  • An open universe is a universe that has a smaller density than the critical density. An open universe will expand forever and never reach a finite size.
  • A closed universe is a universe with a larger density than the critical density. A closed universe will reach a maximum size then gravity will take over and cause the universe to collapse.
  • A flat universe is a universe with a density equal to the critical density.


What we can measure is something called the density parameter, Ω. It is the ratio between the actual density of the universe and the critical density. If Ω is less than one, we live in an open universe. If it is greater than one, our universe is closed. What is the value of Ω?


We know right now that Ω is close to one. We know this from all the observations and measurements we make. The amazing thing is the majority of the mass and energy in the universe can only be inferred by the measurements. Only 4% of the mass and energy is found in stars, gas, and dust that can be directly observed. Dark matter takes up 22% of the mass and energy. And the dark energy is a whopping 74% of the overall density of the universe.


We know that Ω is close to one because of the measurements we make. We also know that the density has to be close to the critical density because if it wasn't, we wouldn't be here.


If Ω was 0.95, the expansion would have been too much for gravity to counteract, gas clouds would not have collapsed, stars and galaxies wouldn't have formed, planets would not have condensed out of the stellar clouds, and life would never have a chance to even exist.


If Ω was 1.05, gravity would have overwhelmed expansion before it even had a chance to start. Without enough time for gas clouds to collapse, again, no stars, galaxies, planet, and yes, life could have formed.


We still don't know if we are in an open, a closed, or a flat universe. Right now, all evidence points to an open universe (with Ω slightly less than 1), but that is what is awesome about science. The search for knowledge means we could learn new things and change our perception of the universe.

























No comments:

Post a Comment